Viscosity-Entropy Ratio of the Unitary Fermi Gas from Zero-Temperature Elementary Excitations
نویسندگان
چکیده
منابع مشابه
Temperature of a trapped unitary Fermi gas at finite entropy
We present theoretical predictions for the equation of state of a harmonically trapped Fermi gas in the unitary limit. Our calculations compare Monte Carlo results with the equation of state of a uniform gas using three distinct perturbation schemes. We show that in experiments the temperature can be usefully calibrated by making use of the entropy, which is invariant during an adiabatic conver...
متن کاملLong-Wavelength Excitations in a Bose Gas at Zero Temperature
The long-wavelength excitations in a simple model of a dilute Bose gas at zero temperature are investigated from a purely microscopic viewpoint. The role of the interaction and the effects of the condensate are emphasized in a dielectric formulation, in which the response functions are expressed in terms of regular functions that do not involve an isolated single-interaction line nor an isolate...
متن کاملShear Viscosity of a Unitary Fermi Gas Near the Superfluid Phase Transition.
We measure the shear viscosity for a resonantly interacting Fermi gas as a function of temperature from nearly the ground state through the superfluid phase transition into the high temperature regime. Further, we demonstrate an iterative method to estimate the local shear viscosity coefficient α(S)(θ) versus reduced temperature θ from the cloud-averaged measurements ⟨α(S)⟩, and compare α(S) to...
متن کاملUnitary Fermi gas in the ǫ expansion
We construct systematic expansions around four and two spatial dimensions for a Fermi gas near the unitarity limit. Near four spatial dimensions such a Fermi gas can be understood as a weaklyinteracting system of fermionic and bosonic degrees of freedom. To the leading and next-to-leading orders in the expansion over ǫ = 4 − d, with d being the dimensionality of space, we calculate the thermody...
متن کاملDamping of a unitary Fermi gas.
We measure the temperature dependence of the radial breathing mode in an optically trapped, unitary Fermi gas of 6Li, just above the center of a broad Feshbach resonance. The damping rate reveals a clear change in behavior which we interpret as arising from a superfluid transition. We suggest pair breaking as a mechanism for an increase in the damping rate which occurs at temperatures well abov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Low Temperature Physics
سال: 2011
ISSN: 0022-2291,1573-7357
DOI: 10.1007/s10909-011-0391-8